Uniform primeness of the Jordan algebra of hermitian quaternion matrices
نویسندگان
چکیده
منابع مشابه
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملSmall Zeros of Hermitian Forms over a Quaternion Algebra
Let D be a positive definite quaternion algebra over a totally real number field K, F (X, Y ) a hermitian form in 2N variables over D, and Z a right D-vector space which is isotropic with respect to F . We prove the existence of a small-height basis for Z over D, such that F (X, X) vanishes at each of the basis vectors. This constitutes a non-commutative analogue of a theorem of Vaaler [19], an...
متن کاملProjective Lines over Jordan Systems and Geometry of Hermitian Matrices
Any set of σ-Hermitian matrices of size n×n over a field with involution σ gives rise to a projective line in the sense of ring geometry and a projective space in the sense of matrix geometry. It is shown that the two concepts are based upon the same set of points, up to some notational differences. Mathematics Subject Classification (2000): 51B05, 15A57, 51A50
متن کاملCongruence of Hermitian Matrices by Hermitian Matrices
Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00635-3